Advanced Search+
LUO Zhiren (罗志仁), YANG Qingxi (杨庆喜), SONG Yuntao (宋云涛), et al.. Analysis of an Extreme Scenario in the Vacuum Vessel in KTX[J]. Plasma Science and Technology, 2015, 17(6): 510-516. DOI: 10. 1088/1009- 0630/17/6/12
Citation: LUO Zhiren (罗志仁), YANG Qingxi (杨庆喜), SONG Yuntao (宋云涛), et al.. Analysis of an Extreme Scenario in the Vacuum Vessel in KTX[J]. Plasma Science and Technology, 2015, 17(6): 510-516. DOI: 10. 1088/1009- 0630/17/6/12

Analysis of an Extreme Scenario in the Vacuum Vessel in KTX

More Information
  • Received Date: July 31, 2014
  • The Vacuum Vessel (VV) system is a vital component of Keda Torus for eXperiment (KTX). Various accidental scenarios might occur on the VV. In this report, an extreme scenario is assumed and studied: plasma accidental termination during the flat-top stage. Numerical simulations based on finite element are performed as the major tool for analyses. The detailed distributions of eddy and the reaction forces on VV are extracted, and the total eddy current and the maximum reaction force due to electromagnetic load are figured out. In addition, according to the results, the VV can be approximately regarded as a centrally symmetric structure, even though its ports distribution is asymmetric.
  • Related Articles

    [1]A ABBASI, M R RASHIDIAN VAZIRI. Effect of polarization force on the Jeans instability in collisional dusty plasmas[J]. Plasma Science and Technology, 2018, 20(3): 35301-035301. DOI: 10.1088/2058-6272/aa96fa
    [2]H SOBHANI, H R SABOUHI, S FEILI, E DADAR. Mode filtering based on ponderomotive force nonlinearity in a plasma filled rectangular waveguide[J]. Plasma Science and Technology, 2017, 19(10): 105504. DOI: 10.1088/2058-6272/aa8089
    [3]LI Guozhan(李国占), CHEN Fu(陈浮), LI Linxi(李林熙), SONG Yanping(宋彦萍). Large Eddy Simulation of the E?ects of Plasma Actuation Strength on Film Cooling Efficiency[J]. Plasma Science and Technology, 2016, 18(11): 1101-1109. DOI: 10.1088/1009-0630/18/11/08
    [4]HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09
    [5]XU Qian(徐倩), DING Rui(丁锐), YANG Zhongshi(杨钟时), NIU Guojian(牛国鉴), K. OHYA, LUO Guangnan(罗广南). PIC-EDDY Simulation of Different Impurities Deposition in Gaps of Carbon Tiles[J]. Plasma Science and Technology, 2014, 16(6): 562-566. DOI: 10.1088/1009-0630/16/6/04
    [6]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [7]LV Linhui(吕林辉), YE Yanlin(叶沿林), CAO Zhongxin(曹中鑫), Xiao Jun(肖军), JIANG Dongxing(江栋兴), ZHENG Tao(郑涛), HUA hui(华辉), Li Zhihuan(李智焕), GE Yucheng(葛俞成), LI Xiangqing(李湘庆), LOU Jianling(楼建玲), et al. Knockout Reaction Mechanism for 6He+[J]. Plasma Science and Technology, 2012, 14(6): 506-509. DOI: 10.1088/1009-0630/14/6/15
    [8]LI Zhihong (李志宏), GUO Bing (郭冰), LI Yunju (李云居), SU Jun (苏俊), LI Ertao (李二涛), BAI Xixiang (白希祥), WANG Youbao (王友宝), ZENG Sheng (曾晟), WANG Baoxiang (王宝祥), YAN Shengquan (颜胜权), LI Zhichang (李志常), et al. Determination of the Astrophysical S(E) Factors or Rates for Radiative Capture Reaction with One Nucleon Transfer Reaction[J]. Plasma Science and Technology, 2012, 14(6): 488-491. DOI: 10.1088/1009-0630/14/6/11
    [9]CAO Zhongxin(曹中鑫), Ye Yanlin(叶沿林), Jiang Dongxing(江栋兴), ZHENG Tao(郑涛), Li Zhihuan(李智焕), HUA Hui(华辉), GE Yucheng(葛榆成), LI Xiangqing(李湘庆), LOU Jianling(楼建玲), XIAO Jun(肖军), LI Qite(李奇特), LV Linhui, et al. Recoiled Proton Tagged Knockout Reaction for 8He[J]. Plasma Science and Technology, 2012, 14(6): 460-463. DOI: 10.1088/1009-0630/14/6/05
    [10]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
  • Cited by

    Periodical cited type(14)

    1. Zhao, Y., Liu, Y., Liu, Z. et al. A 3D-printed fence-surface plasma source for skin treatment and its potential for personalized medical application. Journal of Physics D: Applied Physics, 2024, 57(12): 125207. DOI:10.1088/1361-6463/ad172d
    2. Xu, W., Lu, Y., Yue, X. et al. Influence of operating conditions on electron density in atmospheric pressure helium plasma jets. Journal of Physics D: Applied Physics, 2024, 57(4): 045201. DOI:10.1088/1361-6463/ad0479
    3. Apelqvist, J., Robson, A., Helmke, A. et al. AN EMERGING TECHNOLOGY FOR CLINICAL USE IN WOUND HEALING. Journal of Wound Management, 2024, 25(3): S1-S84. DOI:10.35279/jowm2024.25.03.sup01
    4. Liu, F., Shi, G., Wang, W. et al. Effects of the ground-electrode temperature on electrical and optical characteristics of a coaxial dielectric barrier discharge in atmospheric pressure air. Physica Scripta, 2023, 98(12): 125605. DOI:10.1088/1402-4896/ad0801
    5. Machmud, A., Chang, M.B. Review on applying plasma and catalysis for abating the emissions of fluorinated compounds. Journal of Environmental Chemical Engineering, 2023, 11(6): 111584. DOI:10.1016/j.jece.2023.111584
    6. Nguyen, D.B., Saud, S., Trinh, Q.T. et al. Generation of Multiple Jet Capillaries in Advanced Dielectric Barrier Discharge for Large-Scale Plasma Jets. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1475-1488. DOI:10.1007/s11090-023-10404-0
    7. Liu, Z., Gao, Y., Pang, B. et al. Comparison of the physicochemical properties and inactivation against tumor cells of PAW induced by underwater single-hole and multi-hole bubble plasma. Journal of Physics D: Applied Physics, 2022, 55(29): 295202. DOI:10.1088/1361-6463/ac6a8a
    8. Liu, F., Nie, L., Lu, X. On the green aurora emission of Ar atmospheric pressure plasma. Plasma Science and Technology, 2022, 24(5): 055408. DOI:10.1088/2058-6272/ac52ec
    9. Ouyang, W., Ding, C., Liu, Q. et al. Effect of material properties on electron density and electron energy in helium atmospheric pressure plasma jet. Results in Physics, 2022. DOI:10.1016/j.rinp.2022.105215
    10. Pang, B., Liu, Z., Wang, S. et al. Discharge mode transition in a He/Ar atmospheric pressure plasma jet and its inactivation effect against tumor cells in vitro. Journal of Applied Physics, 2021, 130(15): 153301. DOI:10.1063/5.0063135
    11. Sharma, N.K., Misra, S., Varun, Choyal, Y. et al. Analysis of Discharge Characteristics of Cold Atmospheric Pressure Plasma Jet. IEEE Transactions on Plasma Science, 2021, 49(9): 2799-2805. DOI:10.1109/TPS.2021.3106792
    12. Sharma, N.K., Misra, S., Varun, Pal, U.N. Experimental and simulation analysis of dielectric barrier discharge based pulsed cold atmospheric pressure plasma jet. Physics of Plasmas, 2020, 27(11): 113502. DOI:10.1063/5.0018901
    13. Nguyen, D.B., Trinh, Q.H., Hossain, M.M. et al. Enhancement of plasma-assisted catalytic CO2 reforming of CH4 to syngas by avoiding outside air discharges from ground electrode. International Journal of Hydrogen Energy, 2020, 45(36): 18519-18532. DOI:10.1016/j.ijhydene.2019.06.167
    14. Nguyen, D.B., Trinh, Q.H., Mok, Y.S. et al. Generation of cold atmospheric plasma jet by a coaxial double dielectric barrier reactor. Plasma Sources Science and Technology, 2020, 29(3): 035014. DOI:10.1088/1361-6595/ab6ebd

    Other cited types(0)

Catalog

    Article views (417) PDF downloads (1099) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return